Volvo Car Group has developed a revolutionary concept for lightweight structural energy storage components that could improve the energy usage of future electrified vehicles. The material, consisting of carbon fibers, nano structured batteries and supercapacitors, offers lighter energy storage that requires less space in the car and cost-effective structure options, and is eco-friendly.
The project, funded as part of a European Union research project, included Imperial College London as the academic lead partner along with eight other major participants. Volvo was the only car manufacturer in the project. The project team identified a feasible solution to the heavy weight, large size and high costs associated with the batteries seen in hybrids and electric cars today, whilst maintaining the efficient capacity of power and performance. The research project took place over three-and-a-half years and is now realized in the form of car panels within a Volvo S80 experimental car.
The breakthrough
The answer was found in the combination of carbon fibers and a polymer resin, creating a very advanced nanomaterial and structural supercapacitors. The reinforced carbon fibers sandwich the new battery, and are molded and formed to fit around the car’s frame, such as the door panels, the boot lid and wheel bowl, substantially saving on space. The carbon fiber laminate is first layered, shaped and then cured in an oven to set and harden. The supercapacitors are integrated within the component skin. This material can then be used around the vehicle, replacing existing components, to store and charge energy.
The material is recharged and energized by the use of brake energy regeneration in the car or by plugging to a main electrical grid. It then transfers the energy to the electric motor which is discharged as it is used around the car.
The breakthrough showed that this material not only charges and stores faster than conventional batteries can, but that it is also strong and pliant.
The results so far
Today, Volvo Car Group has evaluated the technology by creating two components for testing and development. These are a boot lid and a plenum cover, tested within the Volvo S80.
The boot lid is a functioning electrically powered storage component and has the potential to replace the standard batteries seen in today’s cars. It is lighter than a standard boot lid, saving on both volume and weight.
The new plenum demonstrates that it can also replace both the rally bar, a strong structural piece that stabilizes the car in the front, and the start/stop battery. This saves more than 50 percent in weight and is powerful enough to supply energy to the car’s 12 Volt system.
It is believed that the complete substitution of an electric car’s existing components with the new material could cut the overall weight by more than 15 percent. This is not only cost-effective but would also have improvements on the impact on the environment.
Volvo leads the way
Electrified cars play an important role in Volvo Car Group’s future product portfolio, and the company will continue to find and develop innovative and advanced technical solutions for the cars of tomorrow.
Here is the list of participating teams:
Imperial College London ICL United Kingdom (project leader)
Swerea Sicomp AB, Sweden
Volvo Car Group, Sweden
Bundesanstalt für Materialforschung und-prüfung BAM, Germany
ETC Battery and FuelCells, Sweden
Inasco, Greece
Chalmers (Swedish Hybrid Centre), Sweden
Cytec Industries (prev UMECO/ACG), United Kingdom
Nanocyl, NCYL, Belgium.
Disclaimer: The comments uploaded on this site do not necessarily represent or reflect the views of management and owner of Cebudailynews. We reserve the right to exclude comments that we deem to be inconsistent with our editorial standards.